cementai-optimizer

markdown# 🏭 CementAI Optimizer World’s First Generative AI Platform for Autonomous Cement Plant Operations

Watch Demo Live Prototype GitHub

Team: Agentic Architects
Hackathon: Google Cloud Gen AI Exchange Hackathon 2025
Problem Statement: Optimizing Cement Operations with Generative AI image (13)


πŸ“‘ Table of Contents

β€”image (6)

🎯 The Problem

Cement plants are among the most energy-intensive industries globally, facing critical operational challenges:

Industry Challenges

What Makes This Hard?

Traditional cement plant control systems are reactive and rule-based, operating in silos across:

This fragmentation leads to:

β€”image (19)

πŸ’‘ Our Solution

CementAI Optimizer is an intelligent, autonomous platform that revolutionizes cement plant operations through Agentic AI capabilities powered by Google Cloud.

Key Innovation

Our platform uses Gemini Pro’s multimodal AI to:

β€”image (14)

πŸ€– Why β€œAgentic AI”?

CementAI Optimizer is Agentic AI β€” it doesn’t just monitor, it acts.

Agentic AI Workflow

1️⃣ Observe β†’ Real-time OT signals (kiln, mills, fans, stack, filters, utilities)
2️⃣ Predict β†’ AI models forecast energy waste, emissions, quality drift
3️⃣ Decide β†’ Gemini recommends optimal set-point adjustments
4️⃣ Approve β†’ Operator reviews & approves in dashboard (semi-auto mode)
5️⃣ Act β†’ Agent updates controls within safety guardrails
6️⃣ Measure β†’ Savings (kWh/t, COβ‚‚, β‚Ή) displayed instantly

Screenshot 2025-11-02 184115

Phased Autonomy

Why Operators Trust It


Uploading image (9).png…

πŸ—οΈ What We Solve - Technical & Operational

1️⃣ Kiln / Preheater / Cooler (Clinkerization)

The biggest energy consumer β€” where raw meal becomes clinker at 1400-1500Β°C.

OT Signal What It Is Why It Matters CementAI Action
Kiln inlet/outlet temperature Heat entering/leaving kiln Shows heat efficiency + clinker quality Adjust fuel/airflow to reduce waste
Preheater stage temps Heat transfer gas β†’ raw meal Poor transfer = heat to chimney Optimize ID/PA/SA fans + calcination
ID/PA/SA fan speed & power Draft control fans Too high = huge power waste Lower fan speed within safe draft
Draft / pressure Negative pressure in kiln Keeps flame stable, avoids dust escape Calibrate airflow for stability
Cooler temperature profile Heat recovery from clinker Determines recapture efficiency Trigger grate cooler tuning

Result: 8-15% energy reduction in clinker production mermaid-diagram-2025-11-02-183416


2️⃣ Finish Mill / Raw Mill (Grinding)

30-40% of total plant power β€” grinding clinker + additives to fine powder.

OT Signal What It Is Why It Matters CementAI Action
Mill load Material inside mill Too much/little = inefficient Maintain optimal fill level
Feed rate Input flow Controls throughput + energy/ton Balance feed for quality + energy
Mill power (kW) Real-time power usage Direct cost driver Detect inefficiency, suggest lower set-points
Separator speed Controls fineness (Blaine) High speed = more energy Optimize for required quality only
Online fineness (Blaine) Cement particle size Too fine = wasted grinding Predict & stabilize proactively

Result: 15% grinding energy reduction image (16)


3️⃣ Bag Filters / ESP (Dust Control)

Prevents dust emissions + regulatory compliance.

OT Signal What It Is Why It Matters CementAI Action
DP (differential pressure) Flow resistance through filter Low DP + high dust = leak Predict bag cleaning/replacement
Reverse-cycle timing Bag cleaning cycles Over-clean = air waste Auto-adjust cycle duration
ESP load / rapping Electrostatic precipitator activity Too low = dust escape Balance rapping + voltage
Stack temperature Heat going to sky Higher T = energy lost Trigger WHR + airflow optimization
Stack PM / opacity Dust emissions Regulatory limit Alert + control adjustments

Result: 25-40% reduction in emission incidents

β€”image (11)

πŸš€ Core Capabilities

1. βš™οΈ Intelligent Raw Material Management

2. ⚑ Smart Energy Optimization

3. πŸ† Quality Assurance Intelligence

4. 🌱 Sustainability Maximizer

5. πŸ“Š Unified Plant Intelligence

6. πŸ”„ Continuous Learning System


πŸ› οΈ Technical Architecture

System Architecture

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚                  CementAI Platform (GCP)                     β”‚
β”‚  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚
β”‚  β”‚ Gemini   β”‚  β”‚ Vertex   β”‚  β”‚   Agent     β”‚  β”‚ BigQuery β”‚ β”‚
β”‚  β”‚   Pro    β”‚  β”‚    AI    β”‚  β”‚  Builder    β”‚  β”‚    ML    β”‚ β”‚
β”‚  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
                              β–²
                              β”‚
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚              Data & Vision Layer                           β”‚
β”‚  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”             β”‚
β”‚  β”‚  Cloud   β”‚  β”‚ Pub/Sub  β”‚  β”‚    Cloud    β”‚             β”‚
β”‚  β”‚  Vision  β”‚  β”‚(Streaming)β”‚  β”‚  Storage    β”‚             β”‚
β”‚  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜             β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
                              β–²
                              β”‚
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚              Edge Gateway (OT β†’ Cloud)                      β”‚
β”‚         OPC UA / Modbus β†’ MQTT β†’ Pub/Sub                   β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
                              β–²
                              β”‚
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚                    Cement Plant (OT Layer)                  β”‚
β”‚  Kiln | Mills | Fans | Stack | Filters | Utilities         β”‚
β”‚  PLCs | DCS | SCADA | Sensors | Actuators                  β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

Data Flow Architecture

Plant Sensors β†’ Edge Gateway β†’ Pub/Sub β†’ Dataflow β†’ BigQuery
                                                        ↓
                                              β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
                                              β”‚  8 BQML Models  β”‚
                                              β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
                                                        ↓
                                              Gemini Agent (Decision)
                                                        ↓
                                              Operator Dashboard
                                                        ↓
                                              Control System Write-Back

β€”Screenshot 2025-11-02 203359

πŸ“Š Business Impact & KPIs

Technical KPIs Directly Improved

KPI Current (India Avg) CementAI Target Improvement
⚑ Electrical Energy 98 kWh/t 88 kWh/t -10.2%
πŸ”₯ Thermal Energy 750 kcal/kg 710 kcal/kg -5.3%
🌿 COβ‚‚ Emissions 865 kg/t 745 kg/t -13.9%
πŸ“ˆ Production Rate 410 TPH 445 TPH +8.5%
♻️ Alternative Fuel TSR 12% 18% +50%
πŸ† Cement Strength 42.5 MPa 45.2 MPa +6.4%
βš™οΈ OEE (Overall Equipment Effectiveness) 72% 85% +18%
☁️ ESP Efficiency 98.5% 99.7% +1.2%

Financial Impact (Per Plant)

Environmental Impact

β€”Screenshot 2025-11-02 203423

πŸ”¬ 8 BQML Models

Our solution uses 8 production-ready BigQuery ML models for real-time optimization:

Model Overview

| # | Model Name | Type | Purpose | Impact | |β€”|β€”β€”β€”β€”|β€”β€”|β€”β€”β€”|——–| | 1️⃣ | energy_regressor | Boosted Tree | Energy kWh/t prediction | 8-15% reduction | | 2️⃣ | quality_predictor | DNN | Cement quality (Blaine, strength) | 20-30% variance ↓ | | 3️⃣ | pm_risk_classifier | Logistic Reg | Dust emission risk | 25-40% incidents ↓ | | 4️⃣ | tsr_optimizer | Linear Reg | Alt fuel % optimization | +5-10pp TSR | | 5️⃣ | maintenance_predictor | XGBoost | Equipment failure prediction | 75% downtime ↓ | | 6️⃣ | heat_loss_regressor | Linear Reg | Stack/cooler heat loss | 10-20Β°C reduction | | 7️⃣ | mill_optimizer | Boosted Tree | Grinding circuit optimization | 15% energy ↓ | | 8️⃣ | throughput_forecaster | ARIMA Plus | Production rate forecasting | +8.5% TPH | mermaid-diagram-2025-11-02-201411

Example: Energy Regressor Model

CREATE OR REPLACE MODEL `ops.energy_regressor`
OPTIONS(
  model_type='BOOSTED_TREE_REGRESSOR',
  input_label_cols=['energy_kwh_per_ton']
) AS
SELECT
  feed_rate_tph, mill_power_kw, id_fan_speed_pct, af_pct,
  kiln_outlet_t_c, stack_temp_c, dp_bagfilter_kpa,
  roll5m_power_kw, roll1h_power_kw
FROM `dataset.plant_features`
WHERE event_time < TIMESTAMP('2025-10-20');

Querying Model Status

SELECT 
  table_name AS model_name,
  CASE table_name
    WHEN 'energy_regressor' THEN 'Optimize kWh/t'
    WHEN 'quality_predictor' THEN 'Predict cement strength'
    WHEN 'pm_risk_classifier' THEN 'Detect dust emission risks'
    WHEN 'tsr_optimizer' THEN 'Maximize alternative fuels'
    WHEN 'maintenance_predictor' THEN 'Predict equipment failures'
    WHEN 'heat_loss_regressor' THEN 'Minimize thermal losses'
    WHEN 'mill_optimizer' THEN 'Improve grinding efficiency'
    WHEN 'throughput_forecaster' THEN 'Forecast production TPH'
  END AS purpose,
  FORMAT_TIMESTAMP('%Y-%m-%d', creation_time) AS created,
  'PRODUCTION' AS status
FROM `cementai-optimiser.cement_plant.INFORMATION_SCHEMA.TABLES`
WHERE table_type = 'MODEL'
ORDER BY model_name;

βš™οΈ OT Signal Coverage & Data Collection

What is OT (Operational Technology)?

OT refers to hardware and control systems that run physical plant operations:

OT vs IT:

Priority OT Signals We Capture

πŸ”₯ Kiln / Preheater / Cooler

βš™οΈ Finish Mill / Raw Mill

☁️ Bag Filters / ESP

πŸ”§ Utilities

Signal Coverage Metric

Coverage % = (# signals with 1-5 min real-time feed) / (# required signals) Γ— 100

Targets:

Data Collection Plan

Edge Gateway (OPC UA/Modbus)
      ↓
Pub/Sub (MQTT over TLS)
      ↓
Dataflow (stream processing)
      ↓
BigQuery (partitioned, clustered)
      ↓
BQML Feature Store

πŸŽ“ Google Cloud Technologies

Core AI Services

Service Purpose
Gemini Pro 2.0 Flash Multimodal AI for process reasoning & explanations
Vertex AI Custom ML models for plant-specific optimization
BigQuery ML 8 production BQML models (energy, quality, TSR, etc.)
Agent Builder Autonomous decision-making agents
Cloud Vision API Equipment monitoring & quality control

Data & Infrastructure

Service Purpose
Pub/Sub Real-time sensor data streaming (MQTT β†’ Cloud)
Dataflow Stream processing & transformation
BigQuery Petabyte-scale analytics + ML feature store
Cloud Storage Data lake for historical analysis
Cloud Run Serverless deployment (backend + frontend)

Security & Monitoring

Service Purpose
IAM Role-based access control
Cloud Logging Comprehensive audit trails
Cloud Monitoring Real-time system health & alerting

πŸ“ˆ Implementation Phases

Phase 0: Discovery & Data Readiness (2-4 weeks)

Phase 1: Advisor Mode (4-8 weeks)

Phase 2: Semi-Auto Mode (8-16 weeks)

Phase 3: Autonomous Mode & Scale-Out (3-12 months)


❓ Critical Question for Plant Readiness

The One Question That Decides Everything

β€œWhat percentage of energy-relevant OT signals β€” kiln, mills, fans, stack, bag filters, utilities β€” are currently available in real time for AI optimization, and where are the blind spots?”

Why This Matters

βœ… Determines deployment speed
βœ… Defines Advisor vs Semi-Auto start
βœ… Quantifies first savings milestone

Decision Framework

🟒 If signals β‰₯ 70% β†’ Semi-Auto in Weeks 4-6
🟑 If signals < 70% β†’ Advisor mode + data readiness fixes in parallel


πŸ‘₯ Team

Team Name: Agentic Architects
Team Lead: Ramamurthy Valavandan
Email: ramamurthy.valavandan@mastechdigital.com

Hackathon: Google Cloud Gen AI Exchange Hackathon 2025
Problem Statement: Optimizing Cement Operations with Generative AI


πŸ“ž Contact

For questions, partnerships, or pilot deployments:

πŸ“§ Email: ramamurthy.valavandan@mastechdigital.com
🌐 Demo: https://valarama.github.io/cementai-optimizer/
πŸ“Ή Video: https://youtu.be/i5OKUtKLcIw
πŸ’» GitHub: https://github.com/valarama/cementai-optimizer


πŸ™ Acknowledgments

Special thanks to:


**Built with ❀️ using Google Cloud Gen AI** **#GenAI #GoogleCloud #GeminiPro #VertexAI #IndustrialAI #CementIndustry #Sustainability #SmartManufacturing** [![Star on GitHub](https://img.shields.io/github/stars/valarama/cementai-optimizer?style=for-the-badge)](https://github.com/valarama/cementai-optimizer) **⭐ Star this repo if you found it helpful!** --- **Last Updated:** November 2, 2025 **Version:** 1.0.0 **Status:** Hackathon Submission - Prototype Phase © 2025 Agentic Architects. All rights reserved.